Friday, September 16, 2011

STEPHEN HAWKING-Life in the universe




 'What is the probability of life existing else where in the universe?' and, 'How may life develop in the future?' 
One can define Life to be an ordered system that can sustain itself against the tendency to disorder, and can reproduce itself. That is, it can make similar, but independent, ordered systems. To do these things, the system must convert energy in some ordered form, like food, sunlight, or electric power, into disordered energy, in the form of heat. In this way, the system can satisfy the requirement that the total amount of disorder increases, while, at the same time, increasing the order in itself and its offspring. A living being usually has two elements: a set of instructions that tell the system how to sustain and reproduce itself, and a mechanism to carry out the instructions. In biology, these two parts are called genes and metabolism. But it is worth emphasising that there need be nothing biological about them. For example, a computer virus is a program that will make copies of itself in the memory of a computer, and will transfer itself to other computers. Thus it fits the definition of a living system, that I have given. Like a biological virus, it is a rather degenerate form, because it contains only instructions or genes, and doesn't have any metabolism of its own. Instead, it reprograms the metabolism of the host computer, or cell. Some people have questioned whether viruses should count as life, because they are parasites, and can not exist independently of their hosts. But then most forms of life, ourselves included, are parasites, in that they feed off and depend for their survival on other forms of life. I think computer viruses should count as life. Maybe it says something about human nature, that the only form of life we have created so far is purely destructive.

What we normally think of as 'life' is based on chains of carbon atoms, with a few other atoms, such as nitrogen or phosphorous. One can speculate that one might have life with some other chemical basis, such as silicon, but carbon seems the most favourable case, because it has the richest chemistry. 

There was no carbon, when the universe began in the Big Bang, about 15 billion years ago. It was so hot, that all the matter would have been in the form of particles, called protons and neutrons.There would initially have been equal numbers of protons and neutrons. However, as the universe expanded, it would have cooled. About a minute after the Big Bang, the temperature would have fallen to about a billion degrees, about a hundred times the temperature in the Sun. At this temperature, the neutrons will start to decay into more protons. If this had been all that happened, all the matter in the universe would have ended up as the simplest element, hydrogen, whose nucleus consists of a single proton. However, some of the neutrons collided with protons, and stuck together to form the next simplest element, helium, whose nucleus consists of two protons and two neutrons. But no heavier elements, like carbon or oxygen, would have been formed in the early universe. It is difficult to imagine that one could build a living system, out of just hydrogen and helium, and anyway the early universe was still far too hot for atoms to combine into molecules. 

Other stars are too far away, for us to be able to see directly, if they have planets going round them. But certain stars, called pulsars, give off regular pulses of radio waves. We observe a slight variation in the rate of some pulsars, and this is interpreted as indicating that they are being disturbed, by having Earth sized planets going round them. Planets going round pulsars are unlikely to have life, because any living beings would have been killed, in the supernova explosion that led to the star becoming a pulsar. But, the fact that several pulsars are observed to have planets suggests that a reasonable fraction of the hundred billion stars in our galaxy may also have planets. The necessary planetary conditions for our form of life may therefore have existed from about four billion years after the Big Bang. 

Our solar system was formed about four and a half billion years ago, or about ten billion years after the Big Bang, from gas contaminated with the remains of earlier stars. The Earth was formed largely out of the heavier elements, including carbon and oxygen. Somehow, some of these atoms came to be arranged in the form of molecules of DNA. This has the famous double helix form, discovered by Crick and Watson, in a hut on the New Museum site in Cambridge. Linking the two chains in the helix, are pairs of nucleic acids. There are four types of nucleic acid, adenine, cytosine, guanine, and thiamine. I'm afraid my speech synthesiser is not very good, at pronouncing their names. Obviously, it was not designed for molecular biologists. An adenine on one chain is always matched with a thiamine on the other chain, and a guanine with a cytosine. Thus the sequence of nucleic acids on one chain defines a unique, complementary sequence, on the other chain. The two chains can then separate and each act as templates to build further chains. Thus DNA molecules can reproduce the genetic information, coded in their sequences of nucleic acids. Sections of the sequence can also be used to make proteins and other chemicals, which can carry out the instructions, coded in the sequence, and assemble the raw material for DNA to reproduce itself.

There is fossil evidence, that there was some form of life on Earth, about three and a half billion years ago. This may have been only 500 million years after the Earth became stable and cool enough, for life to develop. But life could have taken 7 billion years to develop, and still have left time to evolve to beings like us, who could ask about the origin of life. If the probability of life developing on a given planet, is very small, why did it happen on Earth, in about one 14th of the time available.

The process of biological evolution was very slow at first. It took two and a half billion years, to evolve from the earliest cells to multi-cell animals, and another billion years to evolve through fish and reptiles, to mammals. But then evolution seemed to have speeded up. It only took about a hundred million years, to develop from the early mammals to us. The reason is, fish contain most of the important human organs, and mammals, essentially all of them. All that was required to evolve from early mammals, like lemurs, to humans, was a bit of fine-tuning. 

But with the human race, evolution reached a critical stage, comparable in importance with the development of DNA. This was the development of language, and particularly written language. It meant that information can be passed on, from generation to generation, other than genetically, through DNA. 

What are the chances that we will encounter some alien form of life, as we explore the galaxy. If the argument about the time scale for the appearance of life on Earth is correct, there ought to be many other stars, whose planets have life on them. Some of these stellar systems could have formed 5 billion years before the Earth. So why is the galaxy not crawling with self designing mechanical or biological life forms? Why hasn't the Earth been visited, and even colonised. I discount suggestions that UFO's contain beings from outer space. I think any visits by aliens, would be much more obvious, and probably also, much more unpleasant

No comments:

Post a Comment